REDUCTIVE COUPLING OF ALLYLIC ACETATES WITH CARBONYL COMPOUNDS BY USING Pd(0)-SmI2 SYSTEM

Takanori Tabuchi, Junji Inanaga, * and Masaru Yamaguchi

Department of Chemistry, Kyushu University 33, Hakozaki, Higashi-ku, Fukuoka 812, Japan Summary: Reductive coupling of allylic acetates with carbonyl compounds proceeded by SmI₂ in the presence of catalytic Pd(0) to yield homoallylic alcohols.

In a previous paper we reported the Pd(0)-catalyzed reduction of allylic acetates with SmI_2 and 2-propanol.¹⁾ Now we found that allylic acetates can be coupled with carbonyl compounds to give homoallylic alcohols in good yields by the same combination of SmI_2 and catalytic Pd(0).

 $R^{1} \longrightarrow 0Ac + R^{2} \xrightarrow{0} R^{3} \xrightarrow{cat. Pd(0)} R^{1} \xrightarrow{R^{2}} R^{3}$

In a typical experiment, a SmI₂-THF solution²⁾ (0.1 mol cm⁻³, 2 ml) was added to a mixture of cinnamyl acetate (17.6 mg, 0.1 mmol), cyclohexanone (9.8 mg, 0.1 mmol), and 1 mol% of Pd(PPh₃)₄³⁾ in oxygen-free dry THF (2 ml) during 30 min at 0°C and the mixture was stirred at this temperature for 2 h, in which time the blue-green color (Sm²⁺) turned into yellow (Sm³⁺). Usual workup followed by chromatographic purification (silica gel) gave 1-(3-phenyl-2-propenyl)cyclohexanol (16.1 mg, 75 %) (entry 2).

As can be seen in the Table, C-C bond formation occurred, in most cases, at less hindered site. In the case of dienyl acetates, however, the reaction occurred mainly at the ε -carbon (entry 6 and 7) and a similar regiochemical trend was observed when dienyl levulinate was subjected to the same reaction conditions (entry 8). Aromatic or α,β -unsaturated carbonyl compounds could not be used as substrates of the present reaction since they produced pinacol type self-coupling products, predominantly.⁴

The Barbier-type coupling of allyl halides and carbonyl compounds by using SmI₂ has been carried out by Kagan et al.,⁵⁾ most effectively with allyl iodides. However, these halides are not always easily accessible and sometimes unstable and toxic. Therefore, the use of easily preparable allylic acetates and fairly mild reaction conditions seem to be synthetically very advantageous. As an example, terpinen-4-ol (l-p-menthen-4-ol)⁶⁾ was synthesized in a straightforward fashion from neryl acetate via intramolecular cyclization (entry 12).

It is interesting to note that the present reductive coupling process formally involves SmI_2 -induced electrophilic substitution of π -allyl palladium complexes in contrast to the conventional Pd(0)-catalyzed nucleophilic substitutions.⁷⁾

Entry	Allylic acetate	Carbony1 compound	Conditions Temp/Time	Product ^{b)} (ratio)c)	Yield ^{d)} (%)
1	Ph 🔊 OAc	СНО	0 ⁰ C/2.5h ^{e)}	Ph A DH	63
2	Ph MOAc	0	0 ⁰ C/2.5h ^{e)}	Ph~~	75
3	Ph AC		RT/3h ^{e)}		71
4	Ph A OAc	\sim	RT/3h ^{e)}		84 ^{f)}
5	0Ac Ph	()=0	-78 ⁰ C/lOmin	$e) \qquad \qquad$	61
6	∕≫~0Ac	0	RT/4h ^{g)}	$\bigcirc \overset{OH}{\longrightarrow} \bigcirc \overset{OH}{\longrightarrow} \odot \odot \odot $	97
7	∕∽∿0Ac	Et0 ₂ C	RT/4h ^{g)}	$0 \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} \xrightarrow{0} 0$	57 ^{h)}
8		Å~r	RT/4h ^{g)}	$0 \xrightarrow{0}_{(64)} 0 \xrightarrow{0}_{(36)} $	53 ^{h)}
9	Ph ~ OAc	0	Refl/lh ⁱ⁾	$(70)^{\text{OH}}$ $(70)^{\text{OH}}$ $(30)^{\text{OH}}$	76
10	0Ac	_=0	Refl/3h ⁱ⁾		59
11	∕~∕_0Ac	0	Refl/3h ⁱ⁾	CXOH~	52
12		J _{OAc} j)	Refl/3h ^{g)}	(terpinen-4-ol) ^k	62

Table. Reductive Coupling of Allylic Acetates with Carbonyl Compounds.^{a)}

a) Reaction conditions, see the text. b) Satisfactory ¹H NMR data were obtained. c) From ¹H NMR. A wavy line indicates that the E/Z or the diastereomeric ratio was not determined. d) Isolated yield. e) 1 mol% of Pd(PPh₃)₄ was used. f) Erythro/Threo≈1/1. g) 5 mol% of Pd(PPh₃)₄. h) The isomers could not be separated and their structures are tentatively assigned. i) 10 mol% of Pd(PPh₃)₄. j) Prepared from neryl acetate in two steps (9-BBN/H₂0₂, NaOH; PDC). k) Identified by the comparison of the ¹H NMR spectrum with the authentic one.

References and Note

1) T.Tabuchi, J.Inanaga, and M.Yamaguchi, Tetrahedron Lett., in press. 2) P.Girard, J.L.Namy, and H.B.Kagan, J. Chem. Soc., **102**, 2693 (1980). 3) Either PdCl₂ or Pd(OAc)₂ could be used with PPh₃ in place of Pd(PPh₃)₄. Furthermore, Ni(0) was also found to be effective. For example, cinnamyl acetate was coupled with cyclohexanone by SmI₂ at 0[°]C for 2.5h in the presence of 5 mol% of NiCl₂ and 20 mol% of PPh₃ affording the corresponding homoallylic alcohol in 69% yield. (Cf. entry 2 in the Table) 4) J.L.Namy, J.Souppe, and H.B.Kagan, Tetrahedron Lett., **24**, 765 (1983). 5) J.Souppe, J.L.Namy, and H.B.Kagan, Tetrahedron Lett., **23**, 3497 (1982). 6) L.H.Briggs and M.D.Sutherland, J. Org. Chem., **7**, 397 (1942). 7) For reviews: J.Tsuji, Organic Synthesis with Palladium Compounds, Springer-Verlag, Heidelberg (1980); R.F.Heck, Palladium Reagents in Organic Syntheses, Academic Press, P.117 (1985).

(Received in Japan 19 December 1985)